Search results for "Markov jump"

showing 7 items of 7 documents

Comments on “Finite-Time $H_{\infty }$ Fuzzy Control of Nonlinear Jump Systems With Time Delays Via Dynamic Observer-Based State Feedback”

2014

This paper investigates a defect appearing in “Finite-time H∞ fuzzy control of nonlinear jump systems with time delays via dynamic observer-based state feedback,” which the observer-based finite-time H∞ controller via dynamic observer-based state feedback could not ensuring stochastic finite-time boundedness, and satisfying a prescribed level of H∞ disturbance attenuation for the resulting closed-loop error fuzzy Markov jump systems. The corrected results are presented, and the improved optimal algorithms and new simulation results are also provided in this paper.

Observer (quantum physics)Applied MathematicsFinite-time H controlMarkov processTakagi-Sugeno (T-S) fuzzy modelFuzzy control systemState (functional analysis)Fuzzy logicNonlinear systemsymbols.namesakeComputational Theory and MathematicsArtificial IntelligenceControl and Systems EngineeringControl theoryMarkov jump systems (MJS)observer-based state feedbacksymbolsJumplinear matrix inequalities (LMIs)Finite-time H control; linear matrix inequalities (LMIs); Markov jump systems (MJS); observer-based state feedback; Takagi-Sugeno (T-S) fuzzy model; Control and Systems Engineering; Artificial Intelligence; Computational Theory and Mathematics; Applied MathematicsMathematicsIEEE Transactions on Fuzzy Systems
researchProduct

Robust H∞ filtering for networked control systems with markovian jumps and packet dropouts

2014

Published version of an article in the journal: Modeling, Identification and Control. Also available from the publisher at: http://dx.doi.org/10.4173/mic.2014.3.3 Open Access This paper deals with the H∞ filtering problem for uncertain networked control systems. In the study, network-induced delays, limited communication capacity due to signal quantization and packet dropout are all taken into consideration. The finite distributed delays with probability of occurrence in a random way is introduced in the network.The packet dropout is described by a Bernoulli process. The system is modeled as Markovian jumps system with partially known transition probabilities. A full-order filter is designe…

H∞ filterNetwork packetComputer scienceMarkov processComputer Science Applications1707 Computer Vision and Pattern RecognitionNetworked control systemMarkov jump systemH-Infinity filterH filterVDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411lcsh:QA75.5-76.95Computer Science Applicationssymbols.namesakeIdentification (information)Markovian jumpControl and Systems EngineeringControl theorypacket dropoutsH∞ filter; Markov jump system; Networked control system; Packet dropouts; Control and Systems Engineering; Software; Modeling and Simulation; Computer Science Applications1707 Computer Vision and Pattern RecognitionModeling and SimulationControl systemsymbolslcsh:Electronic computers. Computer sciencenetworked control systemSoftware
researchProduct

Robust Estimation for Discrete Markov System with Time-Varying Delay and Missing Measurements

2013

This paper addresses theℋ∞filtering problem for time-delayed Markov jump systems (MJSs) with intermittent measurements. Within network environment, missing measurements are taken into account, since the communication channel is supposed to be imperfect. A Bernoulli process is utilized to describe the phenomenon of the missing measurements. The original system is transformed into an input-output form consisting of two interconnected subsystems. Based on scaled small gain (SSG) theorem and proposed Lyapunov-Krasovskii functional (LKF), the scaled small gains of the subsystems are analyzed, respectively. New conditions for the existence of theℋ∞filters are established, and the correspondingℋ∞f…

Scheme (programming language)EngineeringArticle Subjectbusiness.industrylcsh:MathematicsGeneral MathematicsGeneral EngineeringMarkov systemslcsh:QA1-939Filter designlcsh:TA1-2040Control theoryFiltering problemVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Anvendt matematikk: 413ImperfectBernoulli processlcsh:Engineering (General). Civil engineering (General)businesscomputercomputer.programming_languageMarkov jumpMathematical Problems in Engineering
researchProduct

A simplified predictive control of constrained Markov jump system with mixed uncertainties

2014

Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/475808 Open Access A simplified model predictive control algorithm is designed for discrete-time Markov jump systems with mixed uncertainties. The mixed uncertainties include model polytope uncertainty and partly unknown transition probability. The simplified algorithm involves finite steps. Firstly, in the previous steps, a simplified mode-dependent predictive controller is presented to drive the state to the neighbor area around the origin. Then the trajectory of states is driven as expected to the origin by the final-step mode-independent pre…

Mathematical optimizationArticle Subjectlcsh:MathematicsApplied MathematicsPolytopeState (functional analysis)Analysis; Applied Mathematicslcsh:QA1-939VDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411Set (abstract data type)Model predictive controlPolyhedronControl theoryTrajectoryInvariant (mathematics)AnalysisMathematicsMarkov jump
researchProduct

Predictive control of convex polyhedron LPV systems with Markov jumping parameters

2012

The problem of receding horizon predictive control of stochastic linear parameter varying systems is discussed. First, constant coefficient matrices are obtained at each vertex in the interior of linear parameter varying system, and then, by considering semi-definite programming constraints, weight coefficients between each vertex are calculated, and the equal coefficients matrices for the time variable system are obtained. Second, in the given receding horizon, for each mode sequence of the stochastic convex polyhedron linear parameter varying systems, the optimal control input sequences are designed in order to make the states into a terminal invariant set. Outside of the receding horizon…

convex polyhedronMarkov chainlinear parameter varying systemsLinear systemMathematicsofComputing_NUMERICALANALYSISLinear matrix inequalityOptimal controlModel predictive controlControl theoryConvex polytopeConvex optimizationMarkov jumping parametersInvariant (mathematics)predictive controlMathematics2012 24th Chinese Control and Decision Conference (CCDC)
researchProduct

Qualitative Analysis of Differential, Difference Equations, and Dynamic Equations on Time Scales

2015

and Applied Analysis 3 thank Guest Editors Josef Dibĺik, Alexander Domoshnitsky, Yuriy V. Rogovchenko, Felix Sadyrbaev, and Qi-Ru Wang for their unfailing support with editorial work that ensured timely preparation of this special edition. Tongxing Li Josef Dibĺik Alexander Domoshnitsky Yuriy V. Rogovchenko Felix Sadyrbaev Qi-Ru Wang

Article SubjectDifferential equationlcsh:MathematicsApplied MathematicsFinite difference methodlcsh:QA1-939Stochastic partial differential equationNonlinear systemMultigrid methodKolmogorov equations (Markov jump process)Simultaneous equationsApplied mathematicsAnalysisNumerical partial differential equationsMathematicsAbstract and Applied Analysis
researchProduct

Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays

2013

Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2013/359265 Open Access This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabi…

Time delaysArticle SubjectState-space representationArtificial neural networklcsh:MathematicsApplied MathematicsParameterized complexitylcsh:QA1-939VDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411Nonlinear systemDiscrete time and continuous timeControl theoryJumpAnalysisMathematicsMarkov jumpAbstract and Applied Analysis
researchProduct